Subject Foundation Engg. B.E.(Civil) Sem VII

Q.1	Explain factors affecting selection of type of foundation							
Q.2	Write purposes of site investigation							
Q.3	Enlist boring methods and explain any one in detail							
Q.4	Explain standard penetration test.							
Q.5	A square footing is to be constructed on a deep deposit of sand at a depth of 0.9 m to carry a design load of 300 kN with a factor of safety of 2.5. The ground water table may rise to the ground level during rainy season. Design the plan dimension of footing given $\gamma_{sat} = 20.8$ kN/m ³ , N _c = 25, N _g = 34 and N _y = 32.							
Q.6	Write assumptions made in Terzaghi's theory							
Q.7	Distinguish between general shear failure and local shear failure.							
Q.8	A strip footing 1 m wide and a square footing 1 m side are placed at a depth of 1 m below the ground surface. The foundation soil has cohesion of 10 kPa, angle of friction of 26° and unit weight of 18 kN/m ³ . Calculate the safe bearing capacity using IS:6403. Use factor of safety of 3.							
Q.9	Enlist factors affecting bearing capacity and explain any two in detail							
Q.10	Enlist types of pile according to material used and explain one in detail.							
Q.11	How the load transferred by the pile?							
Q.12	A precast concrete pile of size 40 cm X 40 cm is to be driven into stiff clay. The unconfined compressive strength of the clay is 150 kN/m^2 . Determine the length of pile required to carry a safe working load of 300 kN with factor of safety is 2.5.							
Q.13	Briefly explain Settlement of single pile and settlement of group of pile,							
Q.14	A precast concrete pile 40 cm X 40 cm is driven by a single acting steam hammer .Estimate the allowable load using (a)Engineering News Record Formula (F.S.=6).(b)Hiley Formula(F.S.= 4).Use the following data: (i) Maximum rated energy = 4000 kN-cm (ii) Weight of hammer = 40 kN (iii) Length of pile = 15 m (iv) Efficiency of hammer = 0.82 (v) Co-efficient of resistitution = 0.5 (vi) Weight of pile cap = 3.2 kN (vii) No. of blows for last 25 mm = 6 (viii) Modulus of elasticity of concrete = $2 \times 10^7 \text{ kN/m}^2$ Assume the other data, if necessary							
Q.15	List properties of expansive soil and give details of any two from it.							
Q.16	A bored concrete pile of 350 mm diameter and having overall length of 12 m is embedded in saturated stratum of C- ϕ soil having following properties, C=35 kN/m ² , ϕ =30 ⁰ , γ_{sat} = 18 kN/m ³ .Determine safe bearing capacity of pile. Use IS bearing capacity factor. Assume reasonable value for all other factors							
Q.17	How will you identify the collapsible soil?							
Q.18	Enlist uses of geosynthetics and explain any one in detail							
Q.19	What are the effects of swelling of soils on buildings?							
Q.20	Discuss effect of inclination of load and water table on bearing capacity.							

Q.21	A 40 cm so							y bed. Th	ne standard	
	penetration	1			-		-	10.5	10	
	Depth(m)	1.5	3	4.5	6	7.5	9	10.5	12	
	SPT-N	4	6	12	12	20	24	35	39	
	values									
	Compute the factor of safety available if 1000 kN of compressive load is applied on this									
	pile.		1 6	10 37 4				1 701	Ci 1	
Q.22	A precast concrete pile of size 40 cm X 40 cm is to be driven into stiff clay. The unconfined compressive strength of the clay is 150 kN/m^2 . Determine the length of pile required to carry a									
	safe working						lengen of r	ne require	a to carry a	
Q.23	Explain Plate load test.									
Q.24	A concrete pile of 40 cm diameter was driven into sand of loose to medium density up to a									
	depth of 12 m. The following properties are known (a) average unit weight of soil along the									
	length of pil	•		•			e			
0.70\u03c6. Calculate (a) the ultimate bearing capacity of pile and							e and (b)	allowable	e load with	
	F _s =2.5.Assur									
Q.25	A single test	•				U		1	•	
	It is observed					-				
	kN/m^2 at dep	oth of 12	m. Determ	ine safe lo	ad the pipe	e can car	ry if factor	of safety i	is 2.5. Take	
	α=0.55									
Q.26	A bored con									
	saturated str kN/m ³ .Deter									
	reasonable va				plie. Use	Terzagiii	bearing ea	ipacity fac	ioi. Assume	
Q.27							ned.			
			Load	(kN)		Settle	ement (mm	l)		
			()			0.0			
			25	50			1.20			
			5(00			3.70			
			10	00			7.85			
			12	50			14.00			
			15	00			23.90			
			17	50			36.75			
	Determine th			-						
Q.28	A 350 mm diameter concrete 10 m long pile is driven in a deposit of coarse sand extending to a									
	great depth. The average total unit weight of the soil is 18 kN/m^3 , the average correct N value is									
_	15.Determine the allowable load on pile. Factor of safety is 2.5.									
Q.29	A concrete pile of 40 cm diameter is required to be driven in to a homogeneous mass of									
	cohesion less soil. Pile is required to carry a safe load of 700 kN. The soil consist at silty sand up to 10 m in which the average cone registered $a = 4000$ kPe clong the pile. Silty cond in									
	up to 10 m in which the average cone resistance q_c = 4000 kPa along the pile. Silty sand is underlain by dense sand. The average cone resistance increase to 13000 kPa after 10 m. depth									
	underlain by	dense sa	ind. The av	erage con	e resistance	e increase	e to 13000	кРа after	10 m. depth	

	.Calculate the length of pile. $F.S = 2.5$.							
Q.30	Explain principles & methods of placing foundation on expansive soils.							
Q.30	Justify the statement: "Under reamed piles provide better solution for foundation in							
Q.51	expansive soil." Give codal provisions. For under reamed piles.							
Q.32	Comments on following statements							
Q.32	1. Foundations resting on the piles never undergo differential settlement.							
	 Piles driven in dense sand are never useful. 							
	3. The load taken by point bearing in case of piles in purely cohesive soil remains							
	constant with depth of pile.							
Q.33	A pile group consist of 9 friction piles of 30 cm diameter and 10 m length driven in $clay(C_u)$							
2.00	=100 kN/m ² , γ = 20 kN/m ³).Centre to centre spacing provided to pile is 75 cm. Determine the							
	safe load for the group. (Factor of safety is 3.0, adhesion factor $\alpha = 0.6$). And also find individual							
	pile capacity.							
Q.34	Discuss the influence of following on ultimate bearing capacity of soil for							
	cohesive and cohesion less soil.							
	(a) C and φ values							
	(b) S.P.T values							
	(c) Ground water table							
	(d) Width of footing							
Q.35	A square footing of size 4.5 m X 4.5 m is founded at a depth of 1.8 m below							
	ground surface in fine loose to medium dense sand. The water table is at the							
	base level of the foundation. The corrected standard penetration test value N is							
	13.Compute the net safe bearing pressure for settlement of 45 mm by the use							
	of modified equations of (a) Teng, and (b) Meyerhof.							
Q.36	A rectangular footing (2.5 m X 1.5 m) is subjected to a pressure of 150 kN/m ² on							
	a cohesive soil, having properties $E_s = 4 \times 10^4 \text{ kN/m}^2$ and $\mu = 0.4$. Estimate the							
	immediate settlement at the centre, assuming the (i) the footing is flexible (ii) the							
Q.37	footing is rigid A plate load test was carried out on a ground having a uniform soil stratum up to							
Q.37	sufficient depth. The size of plate used was 0.3 m x 0.3 m.							
	Load(kN) 3 6 12 24 36 48 60							
	(mm)							
	Plot load settlement curve. Determine the bearing capacity and load that can							
	be taken by a column footing of size 1.4 m X 1.4 m, for allowable settlement of							
	25 mm.							
Q.38	A square foundation of 2.8 m width is laid at a depth of 1.8 m in medium sand. γ							
	= 18 kN/m ³ , the water table is at a depth of 2.8 m from the ground level. The							
	SPT value recorded is as under:							
	Depth 0.5 1.5 3.0 4.5 6.0 7.5							
	SPT No 10 17 15 24 22 23							
	Estimate allowable bearing capacity based on medium settlement of 25 mm							

	with corrected N values
Q.39	A square footing of size 2.0 m x 2.0 m is placed over loose sand at a depth of
	0.6 m. With the soil properties γ = 17 kN/m ³ and ϕ = 32 ⁰ .Determine the total
	load that can be carried by the footing.
Q.40	A footing of 1.5 m square is laid at a depth of 1.3 m below the ground surface.
	Determine the net ultimate bearing capacity using IS code method .Take γ = 19
	kN/m ³ and $\phi' = 32^{0}$,C' = 0. Assume appropriate data.