Subject Foundation Engg. B.E.(Civil) Sem VII

Q. 1	Explain factors affecting selection of type of foundation
Q. 2	Write purposes of site investigation
Q. 3	Enlist boring methods and explain any one in detail
Q. 4	Explain standard penetration test.
Q. 5	A square footing is to be constructed on a deep deposit of sand at a depth of 0.9 m to carry a design load of 300 kN with a factor of safety of 2.5 . The ground water table may rise to the ground level during rainy season. Design the plan dimension of footing given $\gamma_{\mathrm{sat}}=20.8$ $\mathrm{kN} / \mathrm{m}^{3}, \mathrm{~N}_{\mathrm{c}}=25, \mathrm{~N}_{\mathrm{q}}=34$ and $\mathrm{N}_{\gamma}=32$.
Q. 6	Write assumptions made in Terzaghi's theory
Q. 7	Distinguish between general shear failure and local shear failure.
Q. 8	A strip footing 1 m wide and a square footing 1 m side are placed at a depth of 1 m below the ground surface. The foundation soil has cohesion of 10 kPa , angle of friction of 26° and unit weight of $18 \mathrm{kN} / \mathrm{m}^{3}$. Calculate the safe bearing capacity using IS: 6403 . Use factor of safety of 3 .
Q. 9	Enlist factors affecting bearing capacity and explain any two in detail
Q. 10	Enlist types of pile according to material used and explain one in detail.
Q. 11	How the load transferred by the pile?
Q. 12	A precast concrete pile of size 40 cm X 40 cm is to be driven into stiff clay. The unconfined compressive strength of the clay is $150 \mathrm{kN} / \mathrm{m}^{2}$. Determine the length of pile required to carry a safe working load of 300 kN with factor of safety is 2.5 .
Q. 13	Briefly explain Settlement of single pile and settlement of group of pile,
Q. 14	A precast concrete pile 40 cm X 40 cm is driven by a single acting steam hammer .Estimate the allowable load using (a)Engineering News Record Formula (F.S.=6).(b)Hiley Formula(F.S.= 4).Use the following data: (i) Maximum rated energy (ii) Weight of hammer (iii) Length of pile (iv) Efficiency of hammer (v) Co-efficient of resistitution (vi) Weight of pile cap $\begin{aligned} & =4000 \mathrm{kN}-\mathrm{cm} \\ & =40 \mathrm{kN} \\ & =15 \mathrm{~m} \\ & =0.82 \\ & =0.5 \\ & =3.2 \mathrm{kN} \end{aligned}$ (vii) No. of blows for last 25 mm Assume the other data, if necessary
Q. 15	List properties of expansive soil and give details of any two from it.
Q. 16	A bored concrete pile of 350 mm diameter and having overall length of 12 m is embedded in saturated stratum of C- φ soil having following properties, $C=35 \mathrm{kN} / \mathrm{m}^{2}, \varphi=30^{0}, \gamma_{\text {sal }}=18$ $\mathrm{kN} / \mathrm{m}^{3}$. Determine safe bearing capacity of pile. Use IS bearing capacity factor. Assume reasonable value for all other factors
Q. 17	How will you identify the collapsible soil?
Q. 18	Enlist uses of geosynthetics and explain any one in detail
Q. 19	What are the effects of swelling of soils on buildings?
Q. 20	Discuss effect of inclination of load and water table on bearing capacity.

	with corrected N values
Q.39	A square footing of size $2.0 \mathrm{~m} \times 2.0 \mathrm{~m}$ is placed over loose sand at a depth of 0.6 m. With the soil properties $\mathrm{Y}=17 \mathrm{kN} / \mathrm{m}^{3}$ and $\varphi=32^{0}$. Determine the total load that can be carried by the footing.
Q.40	A footing of 1.5 m square is laid at a depth of 1.3 m below the ground surface. Determine the net ultimate bearing capacity using IS code method .Take $\mathrm{Y}=19$ $\mathrm{kN} / \mathrm{m}^{3}$ and $\varphi^{\prime}=32^{0}, \mathrm{C}^{\prime}=0$. Assume appropriate data.

